Reduction of motion blurring artifacts using respiratory gated CT in sinogram space: a quantitative evaluation.

نویسندگان

  • Wei Lu
  • Parag J Parikh
  • James P Hubenschmidt
  • David G Politte
  • Bruce R Whiting
  • Jeffrey D Bradley
  • Sasa Mutic
  • Daniel A Low
چکیده

Techniques have been developed for reducing motion blurring artifacts by using respiratory gated computed tomography (CT) in sinogram space and quantitatively evaluating the artifact reduction. A synthetic sinogram was built from multiple scans intercepting a respiratory gating window. A gated CT image was then reconstructed using the filtered back-projection algorithm. Wedge phantoms, developed for quantifying the motion artifact reduction, were scanned while being moved using a computer-controlled linear stage. The resulting artifacts appeared between the high and low density regions as an apparent feature with a Hounsfield value that was the average of the two regions. A CT profile through these regions was fit using two error functions, each modeling the partial-volume averaging characteristics for the unmoving phantom. The motion artifact was quantified by determining the apparent distance between the two functions. The blurring artifact had a linear relationship with both the speed and the tangent of the wedge angles. When gating was employed, the blurring artifact was reduced systematically at the air-phantom interface. The gated image of phantoms moving at 20 mm/s showed similar blurring artifacts as the nongated image of phantoms moving at 10 mm/s. Nine patients were also scanned using the synchronized respiratory motion technique. Image artifacts were evaluated in the diaphragm, where high contrast interfaces intercepted the imaging plane. For patients, this respiratory gating technique reduced the blurring artifacts by 9%-41% at the lung-diaphragm interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Artifact Reduction of Dental Fillings in Head and Neck CT Images

Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...

متن کامل

Reducing the respiratory motion artifacts in PET cardiology: A simulation study

  Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...

متن کامل

Investigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy

Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose.  In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...

متن کامل

Motion Correction in Respiratory Gated Cardiac PET/CT Using Multi-scale Optical Flow

Respiratory motion is a source of degradation in positron emission tomography. As the patients cannot hold breath during the PET acquisition, spatial blurring and motion artifacts are unavoidable which may lead to wrong quantification of the data. A solution based on respiratory-gating and optical flow based correction of the PET data is proposed. This includes deformation of the CT data for ac...

متن کامل

Bone-induced streak artifact suppression in sparse-view CT image reconstruction

BACKGROUND In sparse-view CT imaging, strong streak artifacts may appear around bony structures and they often compromise the image readability. Compressed sensing (CS) or total variation (TV) minimization-based image reconstruction method has reduced the streak artifacts to a great extent, but, sparse-view CT imaging still suffers from residual streak artifacts. We introduce a new bone-induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 32 11  شماره 

صفحات  -

تاریخ انتشار 2005